Part II (10 points)

Problem 1 (5 point)
/// Comparison of journey speeds by different modes of transport in town //////////////////////////////

Source: European Commission
a) Your destination is 2 km ahead. Calculate the average speed (km / h) per each of the five modes of transportation according to the figure data, and what would be more adequate in terms of time spent and fewer emissions. (1 point)
b) Estimate the final energy per pkm for each motorized mode. (1 point)
c) Estimate the well-to-whells (WtW) emissions of the train in g / km, knowing that it consumes (final energy) $12 \mathrm{kWh} / \mathrm{km}$ and is fed by average European electricity mix. (1 point)
d) Estimate the GHG emissions for bus and car, assuming fuel $\mathrm{C}_{7} \mathrm{H}_{14}, \mathrm{LHV} 40 \mathrm{MJ} / \mathrm{kg}$, density $0.8 \mathrm{~kg} / \mathrm{L}, 50 \mathrm{~L} / 100 \mathrm{~km}$ and $7 \mathrm{~L} / 100 \mathrm{~km}$ (1 point)
e) Decide which motorized road transport mode is faster and, simultaneously, emits low levels of GHG emissions (two objectives to minimize) to move 2 km in commuting trips. (1 point)

Sustainable Mobility - MIEEA

Problem 2 (5 point)

Ozone $\left(\mathrm{O}_{3}\right)$ formed during the day has as precursors NO and HC emissions. Estimate for a fleet of 100 Euro 4 gasoline cars, according to Tier 3 methodology, hot emissions, average speed 30 km/h and 15000 km/year:
a) Yearly HC emisisons; (1.5 point)
b) Yearly NO emisisons; (1.5 point)
c) Yearly O_{3} emissions. (2 point)

Assume that O_{3} formation could be represented by,

$$
\mathrm{C}_{8} \mathrm{H}_{17}+\mathrm{NO}+2 \mathrm{O}+2 \mathrm{O}_{2} \Rightarrow \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{3}+\mathrm{NO}_{2}
$$

Information:Table 1. European average electricity mix, typical g/kWh factors. Transmission losses (9\% of the output). Pkm in \% by mode and final energy by mode.

